On the Haezendonck–Goovaerts risk measure for extreme risks

Qihe Tanga,b, Fan Yangb,*

a Department of Statistics and Actuarial Science, University of Iowa, 241 Schaeffer Hall, Iowa City, IA 52242, USA
b Applied Mathematical and Computational Sciences Program, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, USA

\textbf{Abstract}

In this paper, we are interested in the calculation of the Haezendonck–Goovaerts risk measure, which is defined via a convex Young function and a parameter \(q \in (0, 1) \) representing the confidence level. We mainly focus on the case in which the risk variable follows a distribution function from a max-domain of attraction. For this case, we restrict the Young function to be a power function and we derive exact asymptotics for the Haezendonck–Goovaerts risk measure as \(q \uparrow 1 \). As a subsidiary, we also consider the case with an exponentially distributed risk variable and a general Young function, and we obtain an analytical expression for the Haezendonck–Goovaerts risk measure.

* Corresponding author. Tel.: +1 319 471 0811; fax: +1 319 335 3017.
E-mail address: fan-yang-2@uiowa.edu (F. Yang).

1. Introduction

Throughout the paper, let \(X \) be a real-valued random variable, representing a risk variable in loss–profit style, with a distribution function \(F = 1 - F \) on \(\mathbb{R} = (-\infty, \infty) \). Let \(\varphi(\cdot) \) be a non-negative and convex function on \([0, \infty)\) with \(\varphi(0) = 0 \), \(\varphi(1) = 1 \) and \(\varphi(\infty) = \infty \). This function is called a normalized Young function, which, due to its convexity, is continuous and strictly increasing on \((\varphi(0) > 0) \). Recall that the Orlicz space associated with the Young function \(\varphi(\cdot) \) is defined as

\[L^\varphi = \{ X : E[\varphi(cX)] < \infty \text{ for some } c > 0 \}. \]

and the Orlicz heart as

\[L^\varphi_0 = \{ X : E[\varphi(cX)] < \infty \text{ for all } c > 0 \}. \]

It is easy to see that \(L^\varphi \) and \(L^\varphi_0 \) coincide with each other if

\[\limsup_{t \to \infty} \varphi(2x)/\varphi(x) < \infty ; \text{ see also page } 77 \text{ of } \text{Rao and Ren} \text{ (1991)}. \]

For a Young function \(\varphi(\cdot) \) and a risk variable \(X \in L^\varphi_0 \), let \(H_q\{X, x\} \) be the unique solution \(h \) to the equation

\[E\left[\varphi\left(\frac{(X-x)}{h}\right)\right] = 1-q, \quad q \in (0, 1), \quad \text{if } F(x) > 0 \text{ and } H_q\{X, x\} = 0 \text{ if } F(x) = 0. \]

In (1.1), and throughout the paper, we write \(Y_A = Y_{1\{A\}} = Y \lor 0 \) as the positive part of a random variable \(Y \), with \(1_A \) denoting the indicator of an event \(A \). The existence and uniqueness of the solution \(h \) to Eq. (1.1) for the case \(F(x) > 0 \) can be seen from the fact that the left-hand side of (1.1) is a continuous function of \(h > 0 \), it diverges to \(+\infty \) as \(h \downarrow 0 \), and it strictly decreases with limit 0 as \(h \uparrow \infty \) or until it hits 0 at some \(h > 0 \). For \(q \in (0, 1) \), the Haezendonck–Goovaerts risk measure for \(X \) is defined as

\[H_q\{X\} = \inf_{x \in X} (x + H_q\{X, x\}). \]

This risk measure was first introduced by Haezendonck and Goovaerts (1982) and was named as the Haezendonck–Goovaerts risk measure by Goovaerts et al. (2004). Based on a recent conversation with Bellini and Rosazza Gianin during the 15th International Congress on Insurance: Mathematics and Economics in Trieste, we think that it is more proper to call it the Haezendonck–Goovaerts risk measure in order to acknowledge the contribution of both authors in their seminal paper. This risk measure has recently been studied by Bellini and Rosazza Gianin (2008a,b), Nam et al. (2011) and Krätschmer and Zähle (2011). We have followed the style of Bellini and Rosazza Gianin (2008a,b) to define this risk...
measure. As pointed out by Bellini and Rosazza Gianin (2008a), the Haezendonck–Goovaerts risk measure $H_q[x]$ is a law invariant and coherent risk measure. We remark that, due to its very definition, an analytic expression for $H_q[x]$ is not possible in general.

The simplest, yet interesting, special case is when $\varphi(t) = t$ for $t \geq 0$. In this case,

$$H_q[x] = \inf_{x \in \mathbb{R}} \left(x + \frac{\mathbb{E}[(X - x)_+]}{1 - q} \right) = F^-(q) + \frac{\mathbb{E}[(F - F^-(q))_+]}{1 - q}, \quad (1.3)$$

where, and throughout the paper, $F^-(q) = \inf\{x \in \mathbb{R} : F(x) \geq q\}$ denotes the inverse function of F, also called the quantile of F or the Value at Risk of X. Thus, the Haezendonck–Goovaerts risk measure is reduced to TVaR$_q[X]$, the well-known Tail Value at Risk of X.

The parameter q in the definition of the Haezendonck–Goovaerts risk measure vaguely represents a confidence level. This is demonstrated by the special case above corresponding to $\varphi(t) = t$ for $t \geq 0$. In the post financial crisis era, risk managers become more and more concerned with the tail area of risks due to the excessive prudence of nowadays regulatory framework. Motivated by this, we focus on the asymptotic behavior of $H_q[x]$ as $q \uparrow 1$.

For a risk variable X with a distribution function F on \mathbb{R}, denote by $\bar{X} = F^-(1) < \infty$ its upper endpoint and by $\hat{p} = \text{Pr}(X = \bar{X})$ the probability assigned to the upper endpoint. Note that $\hat{p} = 0$ holds automatically if $\bar{X} = \infty$ or if F is continuous at \bar{X}. Theorem 3.1 of Goovaerts et al. (2004) shows that $F^-(q) \leq H_q[x] \leq \bar{X}$. Thus, if $0 < \hat{p} \leq 1$, then $H_q[x] = \bar{X}$ for all $1 - \hat{p} < q \leq 1$, while if $\hat{p} = 0$, then

$$\lim_{q \uparrow 1} H_q[x] = \bar{X}.$$

We only need to consider the latter case with $\hat{p} = 0$. When $\bar{X} = \infty$ we shall establish exact asymptotics for $H_q[x]$ diverging to ∞ as $q \uparrow 1$, while when $\bar{X} < \infty$ we shall establish exact asymptotics for $\bar{X} - H_q[x]$ decaying to 0 as $q \uparrow 1$. Hence, the notion of extreme value theory becomes relevant.

We shall assume that the risk variable X follows a distribution function F from the max-domain of attraction of an extreme value distribution function. Due to the complexity of the problem, we shall only consider a power Young function, $\varphi(t) = t^k$ for $k \geq 1$.

We prove the following.

- If F is from the Fréchet max-domain of attraction, then $H_q[x] \sim \frac{c_1}{k} F^-(q)$.
- If F is from the Gumbel max-domain of attraction, then $H_q[x] \sim F^-(1 - c_2 q)$ provided $\hat{X} = \infty$ or $\hat{p} = 0$ and $H_q[x] \sim (\hat{X} - F^-((1 - c_2 q))$ provided $\hat{X} \ll \infty$.
- If F is from the Weibull max-domain of attraction, then $\hat{X} - H_q[x] \sim c_3 (\hat{X} - F^-((q))$.

In these assertions, the notation “\sim” means that the quotients of both sides tends to 1 as $q \uparrow 1$ and the coefficients c_1, c_2 and c_3 are explicitly given.

As a subsidiary, we also consider the case with an exponentially distributed risk variable X and a general Young function $\varphi(\cdot)$. For this case, we obtain an analytical expression for the Haezendonck–Goovaerts risk measure $H_q[x]$. However, at this stage we cannot extend the study to the case of both a generally distributed risk variable X and a general Young function $\varphi(\cdot)$.

The rest of this paper consists of six sections. In Section 2, we establish a general result for the Haezendonck–Goovaerts risk measure with a power Young function. This result forms the theoretical basis for our asymptotic analysis. Then after preparing some preliminaries on max-domains of attraction and regular/rapid variation in Section 3, we derive exact asymptotic formulas for the Haezendonck–Goovaerts risk measure with a power Young function for the Fréchet, Gumbel and Weibull cases in Sections 4–6, respectively. For each case, numerical studies are also carried out to examine the accuracies of the asymptotic formulas. In Section 7, we consider the case of an exponentially distributed risk variable and a general Young function.

2. General discussions with a power Young function

Let X be a risk variable distributed by F with an upper endpoint $\bar{X} \leq \infty$. Assume a power Young function, $\varphi(t) = t^k$ for some $k \geq 1$. For this case, the Orlicz space and Orlicz heart coincide with each other and are both equal to $\{X : E[X^k] < \infty\}$.

As we mentioned before, if $k = 1$, then the Haezendonck–Goovaerts risk measure for X is equal to TVaR$_q[X]$ given by (1.3). Thus, we only consider $k > 1$ in the following theorem in which we analyze the Haezendonck–Goovaerts risk measure for a general risk variable X.

Theorem 2.1. Let the Young function be $\varphi(t) = t^k$ for some $k > 1$ and let X be a risk variable with $E[X^k] < \infty$, $\bar{X} \leq \infty$ and $\hat{p} = 0$. Then the Haezendonck–Goovaerts risk measure for X is equal to

$$H_q[x] = x + \left(\frac{\mathbb{E}[(X - x)^k]}{1 - q} \right)^{1/k}, \quad q \in (0, 1), \quad (2.1)$$

where $x = x(q) \in (0, \bar{X})$ is the unique solution to the equation

$$\left(\frac{\mathbb{E}[(X - x)^k]}{1 - q} \right)^{1/k} = 1 - q. \quad (2.2)$$

The proof of Theorem 2.1 relies on the following elementary result.

Lemma 2.1. Consider the function $g(x) = E[(X - x)^k]$ for $x \in \mathbb{R}$, where $k \geq 1$ is a constant and X is a random variable with $E[X^k] < \infty$.

(a) If $k > 1$, then $g(x)$ is continuously differentiable with

$$g'(x) = -kE[(X - x)^{k-1}], \quad x \in \mathbb{R}. \quad (2.3)$$

(b) If $k = 1$, then $g(x) = -\mathbb{F}(x)$ and $g'(x) = -\mathbb{F}(x - 0)$ for each $x \in \mathbb{R}$.

Proof. Our derivation for $g'(x)$ below is good for both cases $k > 1$ and $k = 1$. Observe that

$$g'_+(x) = \lim_{\Delta x \downarrow 0} \frac{\mathbb{E}[(X - (x + \Delta x))^k] - \mathbb{E}[(X - x)^k]}{\Delta x} = \lim_{\Delta x \downarrow 0} \left[\frac{-(X - x)^k}{\Delta x} I_{1(x < x + \Delta x)} + \frac{(X - (x + \Delta x))^k - (X - x)^k}{\Delta x} I_{1(x > x + \Delta x)} \right]$$

$$= \lim_{\Delta x \downarrow 0} \mathbb{E}[I_1(\Delta x) + I_2(\Delta x)]. \quad (2.4)$$

Clearly,

$$|I_1(\Delta x)| \leq (\Delta x)^{k-1} I_{1(x < x + \Delta x)}.$$
Moreover, there is some \(\xi \) between \(X - (x + \Delta x) \) and \(X - x \) such that
\[
I_2(\Delta x) = -k^k x^{k-1} 1_{(x+x_+)}.
\]
These estimates for \(I_1(\Delta x) \) and \(I_2(\Delta x) \) enable us to apply the dominated convergence theorem to interchange the order of the limit and expectation in (2.4). Hence,
\[
g'_n(x) = E \left[\lim_{\Delta x \downarrow 0} I_1(\Delta x) + \lim_{\Delta x \downarrow 0} I_2(\Delta x) \right] = -kE \left[(X - x)^{k-1} \right].
\]
When \(k = 1 \), this gives \(g'_n(x) = -\overline{F}(x) \).

For \(g'_n(x) \), we need to distinguish the cases \(k > 1 \) and \(k = 1 \).
For the case \(k > 1 \), going along the same lines as above we obtain
\[
g'_n(x) = -kE \left[(X - x)^{k-1} \right].
\]
For the case \(k = 1 \), we have
\[
g'_n(x) = \lim_{\Delta x \downarrow 0} \frac{E \left[(X - (x + \Delta x))^n \right] - E \left[(X - x)^n \right]}{\Delta x} = -E \left[(X - x)^n \right].
\]
Clearly, the first term after the expectation, denoted by \(I_2(\Delta x) \), satisfies
\[
|I_2(\Delta x)| \leq 1_{(x+x_+)}.
\]
Hence, by the dominated convergence theorem,
\[
g'_n(x) = \lim_{\Delta x \downarrow 0} I_2(\Delta x) = -1_{(x_+)}.
\]
Finally, for \(k > 1 \), the expression for \(g'(x) \) given by (2.3) is obviously continuous in \(x \in \mathbb{R} \). This ends the proof. \(\square \)

Proof of Theorem 2.1. For \(\varphi(t) = t^k \), it follows straightforwardly from (1.1) that
\[
H_0[x,x] = \left(\frac{E \left[(X - x)^k \right]}{1 - q} \right)^{1/k}.
\]
By virtue of Minkowski’s inequality, one can easily verify that \(H_0[x,x] \) is convex over \(\mathbb{R} \) and is strictly convex over \((-\infty, \hat{x}) \). Write
\[
g_n(x) = x + \left(\frac{E \left[(X - x)^k \right]}{1 - q} \right)^{1/k}, \quad x \in \mathbb{R},
\]
so that \(H_0[x,x] = \inf_{x \in \mathbb{R}} g_n(x) \). The function \(g_n(\cdot) \) inherits the convexity of \(H_0[x,x] \) and \(g_n(x) \) diverges to \(+\infty \) as \(x \to \pm \infty \). Hence, its overall infimum is attainable. To obtain this infimum, we naturally consider the equation \(g_n(x) = 0 \). By Lemma 2.1(a),
\[
g'_n(x) = 1 - \frac{E \left[(X - x)^{k-1} \right]}{(1 - q)^{1/k}} \left[\frac{E \left[(X - x)^k \right]}{1 - q} \right]^{(k-1)/k}.
\]
Thus, the expression \(g'_n(x) = 0 \) is equivalent to (2.2).

For every \(q \in (0, 1) \), the existence of a solution \(x \in (-\infty, \hat{x}) \) to (2.2) can be verified as follows. The left-hand side of (2.2) is a continuous function of \(x \in \mathbb{R} \). As \(x \downarrow -\infty \), we have
\[
\frac{E \left[(X - x)^{k-1} \right]}{(E \left[(X - x)^k \right])^{k-1}} \rightarrow 1,
\]
where we applied the dominated convergence theorem to both the numerator and denominator. As \(x \uparrow \hat{x} \), we have
\[
\frac{(E \left[(X - x)^{k-1} \right])^k}{(E \left[(X - x)^k \right])^{k-1}} \rightarrow 0,
\]
where in the second step we applied Hölder’s inequality to the numerator. Moreover, the uniqueness of the solution to Eq. (2.2), or, equivalently, to the equation \(g'_n(x) = 0 \), is ensured by the strict convexity of the function \(g_n(\cdot) \) on \((-\infty, \hat{x}) \). This ends the proof of Theorem 2.1. \(\square \)

Lemma 2.2. Consider Eq. (2.2) in which \(k \geq 1 \) is a constant. \(X \) is a random variable with \(E(X^k) \leq -\infty < \hat{x} \leq \tilde{q} = 0 \) and \(\beta = 0 \), and \(q \in (0, 1) \), \(x \in (-\infty, \hat{x}) \) are two deterministic variables. Then \(q \uparrow 1 \) if and only if \(x \uparrow \hat{x} \).

Proof. For \(k = 1 \), Eq. (2.2) is simplified to \(\overline{F}(x) = 1 - q \). Thus, the equivalence of \(q \uparrow 1 \) and \(x \uparrow \hat{x} \) is obvious.

Now consider \(k > 1 \) only. The derivation in (2.6) shows that the left-hand side of (2.2) is bounded by \(\overline{F}(x) \). Thus, \(1 - q \leq \overline{F}(x) \), from which we easily infer that \(x \uparrow \hat{x} \) implies \(q \uparrow 1 \). Conversely, as mentioned in the proof of Theorem 2.1, the function \(g_n(\cdot) \) is strictly convex over \((-\infty, \hat{x}) \). Thus, \(g'_n(x) \) given by (2.5) is strictly increasing in \(x \in (-\infty, \hat{x}) \), or, equivalently, the left-hand side of (2.2) is strictly decreasing in \(x \in (-\infty, \hat{x}) \). Thus, \(q \uparrow 1 \) must lead to \(x \uparrow \hat{x} \). \(\square \)

3. Max-domains of attraction and regular variation

In this section, we highlight some basic concepts in extreme value theory. Monographs on extreme value theory in the context of insurance and finance are given by Resnick (1987, 2007), Embrechts et al. (1997), McNeil et al. (2005) and Malevergne and Sornette (2006), among others. In this paper, we follow the main methodology of Hashorva et al. (2010) and Asimit et al. (2011), who studied some insurance problems using extreme value theory.

A distribution function \(F \) on \(\mathbb{R} \) is said to belong to the max-domain of attraction of an extreme value distribution function \(G \), denoted by \(F \in \text{MDA}(G) \), if
\[
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |F^n(c_n x + d_n) - G(x)| = 0
\]
holds for some norming constants \(c_n > 0 \) and \(d_n \in \mathbb{R} \), \(n \in \mathbb{N} = \{0, 1, \ldots\} \). By the classical Fisher–Tippett theorem (see Fisher and Tippett, 1928 and Gnedenko, 1943), only three choices for \(G \) are possible, namely the Fréchet, Gumbel and Weibull distributions, which are denoted by \(\Phi \), \(\Lambda \) and \(\Psi \), respectively, with \(\gamma > 0 \) indexing members of the Fréchet and Weibull max-domains of attraction.
The Fréchet distribution function is given by \(\Phi_\gamma(x) = \exp \left(-\gamma^{-1}x^{-\gamma} \right) \) for \(x > 0 \). A distribution function \(F \) belongs to MDA(\(\Phi_\gamma \)) if and only if its upper endpoint \(\hat{x} \) is infinite and the relation
\[
\lim_{x \to \hat{x}} \frac{F(xy)}{F(x)} = y^{-\gamma}, \quad y > 0, \tag{3.1}
\]
holds; see Theorem 3.3.7 of Embrechts et al. (1997).

The standard Gumbel distribution function is given by \(\Lambda(x) = \exp \left(-e^{-x} \right) \) for \(x \in \mathbb{R} \). A distribution function \(F \) with an upper endpoint \(\hat{x} \leq \infty \) belongs to MDA(\(\Lambda \)) if and only if the relation
\[
\lim_{x \to \hat{x}} \frac{F(x + ya(x))}{F(x)} = e^{\gamma}, \quad y \in \mathbb{R}, \tag{3.2}
\]
holds for some positive auxiliary function \(a(\cdot) \) on \((-\infty, \hat{x})\). The function \(a(\cdot) \) is unique up to asymptotic equivalence and a commonly-used choice for \(a(\cdot) \) is the mean excess function, \(a(x) = E[X-x|X>\hat{x}] \) for \(x < \hat{x} \). It is also known that
\[
\left\{ \begin{array}{l}
a(x) = \sigma(x), \quad \text{if } \hat{x} = \infty, \\
a(x) = \sigma(\hat{x} - x), \quad \text{if } \hat{x} < \infty.
\end{array} \right. \tag{3.3}
\]
See Resnick (1987) and Embrechts et al. (1997) for more details. The following representation theorem is useful; see Balkema and de Haan (1972), Proposition 1.4 of Resnick (1987) or relation (3.35) of Embrechts et al. (1997). For \(F \in \text{MDA}(\Lambda) \) with \(\hat{x} \leq \infty \), there is some \(x_0 < \hat{x} \) such that
\[
\overline{F}(x) = b(x) \exp \left(- \int_{x_0}^x \frac{1}{a(y)} \, dy \right), \quad x_0 < x < \hat{x}, \tag{3.4}
\]
where \(a(\cdot) \) is an auxiliary function, chosen to be positive and absolutely continuous with \(\lim_{x \to \hat{x}} a'(x) = 0 \), and \(b(\cdot) \) is a positive measurable function with \(\lim_{x \to \hat{x}} b(x) = b > 0 \).

The Weibull distribution function is given by \(\Psi_\gamma(x) = \exp \left(-|x|^\gamma \right) \) for \(x \leq 0 \). A distribution function \(F \) belongs to MDA(\(\Psi_\gamma \)) if and only if its upper endpoint \(\hat{x} \) is finite and
\[
\lim_{x \to \hat{x}} \frac{\overline{F}(x-y)}{\overline{F}(x)} = y^\gamma, \quad y > 0; \tag{3.5}
\]
see Theorem 3.3.12 of Embrechts et al. (1997). The following elementary result might be known somewhere but we cannot suitably address a reference.

Lemma 3.1. Let \(F \) on \(\mathbb{R} \) belong to the max-domain of attraction of a non-degenerate distribution function. Then
(a) \(\overline{F}(x-0) \sim \overline{F}(x) \) as \(x \uparrow \hat{x}; \)
(b) \(\overline{F}(F^{-}(q)) \sim 1 - q \) as \(q \uparrow 1 \).

Proof. (a) The result for the Gumbel case is in Corollary 1.6 of Resnick (1987). The result for the Fréchet and Weibull cases easily follows from the equivalent conditions (3.1) and (3.5), respectively.
(b) This follows from the two-sided inequality \(\overline{F}(F^{-}(q)) \leq 1 - q \leq \overline{F}(F^{-}(q) - 0) \) and the result in (a). \(\square \)

It is often convenient and useful to restate the equivalent conditions for the max-domains of attraction in terms of regular or rapid variation. A positive measurable function \(r(\cdot) \) is said to be regularly varying at \(x_0 = 0 \) or \(\pm \infty \) with a regularity index \(\alpha \in (-\infty, \infty) \), denoted by \(r(\cdot) \in \mathcal{R}_\alpha(x_0) \), if
\[
\lim_{x \to x_0} \frac{r(xy)}{r(x)} = y^\alpha, \quad y > 0.
\]
The class \(\mathcal{R}_\alpha(x_0) \) consists of functions slowly varying at \(x_0 \). Moreover, a positive measurable function \(r(\cdot) \) is said to be rapidly varying at \(x_0 = 0 \) or \(\pm \infty \), denoted by \(r(\cdot) \in \mathcal{R}_\infty(x_0) \) or \(1/r(\cdot) \in \mathcal{R}_{-\infty}(x_0) \), if
\[
\lim_{x \to x_0} \frac{r(xy)}{r(x)} = \begin{cases} \infty, & \text{for } y > 1, \\ 0, & \text{for } 0 < y < 1. \end{cases}
\]
Relation (3.1) shows that \(F \in \text{MDA}(\Phi_\gamma) \) if and only if \(\overline{F}(\cdot) \in \mathcal{R}_{-\gamma}(\infty) \), while relation (3.5) shows that \(F \in \text{MDA}(\Psi_\gamma) \) if and only if \(\overline{F}(x-\cdot) \in \mathcal{R}_{\gamma}(0) \). Furthermore, for \(F \in \text{MDA}(\Lambda) \), it easily follows from relations (3.2) and (3.3) that \(\overline{F}(\cdot) \in \mathcal{R}_{-\gamma}(\infty) \) provided \(\hat{x} = \infty \) or \(\overline{F}(x-\cdot) \in \mathcal{R}_{\gamma}(0) \) provided \(\hat{x} < \infty \).

The following Potter’s bounds are a restatement of Theorem 1.5.6 of Bingham et al. (1988):

Lemma 3.2. Let \(r(\cdot) \in \mathcal{R}_\alpha(x_0) \) with \(x_0 = 0 \) or \(\pm \infty \) and \(\alpha \in (-\infty, \infty) \). It holds for arbitrary \(0 < \varepsilon < 1 \) and all \(x, y \) sufficiently close to \(x_0 \) that
\[
(1 - \varepsilon) \left(\frac{y^{a+\varepsilon}}{x^{a}} \vee \frac{y^{-a}}{x^{a}} \right) \leq \frac{r(y)}{r(x)} \leq (1 + \varepsilon) \left(\frac{y^{a+\varepsilon}}{x^{a}} \vee \frac{y^{-a}}{x^{a}} \right).
\]

The following lemma is copied from Proposition 0.8(V) of Resnick (1987).

Lemma 3.3. Let \(U(\cdot) \) be a non-decreasing function on \(\mathbb{R}_+ \) with \(U(\infty) = \infty \). Then \(U(\cdot) \in \mathcal{R}_{\varepsilon}(\infty) \) for \(0 \leq \varepsilon \leq \infty \) if and only if \(U^{-1}(\cdot) \in \mathcal{R}_{1/\varepsilon}(\infty) \).

The following lemma is motivated by Proposition 1.1 of Davis and Resnick (1988).

Lemma 3.4. Let \(F \in \text{MDA}(\Lambda) \) with the representation (3.4). Then, for arbitrary \(0 < \varepsilon < 1 \), there is some \(x_0 < \hat{x} \) such that, for all \(x_0 < x < \hat{x} \) and all \(y \geq 0 \),
\[
\frac{\overline{F}(x+ya(x))}{\overline{F}(x)} \leq (1 + \varepsilon)(1 + ey)^{-1/\varepsilon}.
\]

Proof. Since \(\lim_{x \to \hat{x}} a'(x) = 0 \), there is some \(x_0 < \hat{x} \) such that the inequality
\[
a(x + za(x)) - a(x) \leq \varepsilon za(x)
\]
holds for all \(x_0 < x < \hat{x} \) and all \(z \geq 0 \). It follows that
\[
\frac{a(x)}{a(x + za(x))} \geq \frac{1}{1 + \varepsilon z}.
\]
Hence, for all \(x_0 < x < \hat{x} \) and all \(y \geq 0 \),
\[
\frac{\overline{F}(x+ya(x))}{\overline{F}(x)} = \left(\frac{b(x + ya(x))}{b(x)} \right) \exp \left\{ - \int_x^{x+ya(x)} \frac{1}{a(z)} \, dz \right\} = \left(\frac{b(x + ya(x))}{b(x)} \right) \exp \left\{ - \int_y^\infty \frac{a(x)}{a(x + za(x))} \, dz \right\} \leq \left(1 + \varepsilon \right) \exp \left\{ - \int_y^\infty \frac{1}{1 + 1/\varepsilon z} \, dz \right\} = \left(1 + \varepsilon \right)(1 + ey)^{-1/\varepsilon}.
\]
This proves Lemma 3.4. \(\square \)
4. The Fréchet case with a power Young function

Our asymptotic analysis in the next three sections is based on Theorem 2.1. In this section, we consider the Fréchet case. As usual, denote by $B(\cdot, \cdot)$ the beta function, namely,

$$B(a, b) = \int_0^1 x^{a-1} (1 - x)^{b-1} dx, \quad a, b > 0.$$

Theorem 4.1. Let $\Phi(\cdot) = t^k$ for some $k \geq 1$ and let $F \in \text{MDA}(\Phi_{\gamma})$ for some $\gamma > k$. Then, as $q \uparrow 1$,

$$H_q[x] \sim \frac{F(x) - k}{(k-1)B(\gamma - k - 1, k - 1)} x^{1-k} F^{\gamma - k} (q).$$

We first prepare an elementary result.

Lemma 4.1. If $F \in \text{MDA}(\Phi_{\gamma})$ for some $\gamma > 0$, then it holds for all $0 < k < \gamma$ that

$$\lim_{x \rightarrow \infty} \frac{E\left[X - x \right]^k}{x^k F(x)} = k B(\gamma - k, k).$$

Proof. Since $\tilde{F}(x) \in \mathcal{R}_{\gamma}(+\infty)$, by Lemma 3.2, for arbitrary $0 < \varepsilon < \gamma - k$, there is some $x_0 > 0$ such that, for all $x > x_0$ and all $y > 0$,

$$(1 - \varepsilon) \left(\frac{x + y}{x} \right)^{-\gamma - \varepsilon} \leq \frac{F(x + y)}{F(x)} \leq (1 + \varepsilon) \left(\frac{x + y}{x} \right)^{-\gamma + \varepsilon}.$$

By the second inequality above, it holds for all $x > x_0$ that

$$\frac{E\left[X - x \right]^k}{F(x)} = \int_0^\infty \frac{F(x + y)}{F(x)} dy^k
\leq (1 + \varepsilon) \int_0^\infty \left(\frac{x + y}{x} \right)^{-\gamma - \varepsilon} dy^k
= (1 + \varepsilon) \frac{\varepsilon^k}{\gamma - k} \int_0^\infty (z + 1)^{-\gamma + \varepsilon} dz.$$

where in the last step we used the change of variables $z = y/x$. By the arbitrariness of ε, it follows that

$$\lim_{x \rightarrow \infty} \frac{E\left[X - x \right]^k}{x^k F(x)} \leq \int_0^\infty (z + 1)^{-\gamma} dz.$$

In the same way we can establish the corresponding inequality for the lower limit. Furthermore, using the change of variables $u = (z + 1)^{-1}$ we have

$$\int_0^\infty (z + 1)^{-\gamma} dz \leq \int_0^1 u^{-k+1} (1 - u)^{k} du = k B(\gamma - k, k).$$

Thus, relation (4.2) holds. □

Proof of Theorem 4.1. Recall Lemma 2.2, which shows that $q \uparrow 1$ if and only if $x \uparrow \hat{x}$. In the proof below we shall tacitly alternate the two limits.

We distinguish the cases $k = 1$ and $k > 1$. For the case $k = 1$, applying Lemmas 4.1 and 3.1(b) to relation (1.3) we have

$$H_q[X] \sim \frac{F^{\gamma}(q)}{\gamma - 1} \sim \frac{\gamma}{\gamma - 1} F^{\gamma}(q).$$

This proves relation (4.1) for the case $k = 1$.

Now turn to the case $k > 1$. Starting from Theorem 2.1 we need to approximate the optimal value of x that solves Eq. (2.2). By Lemma 4.1,

$$1 - q = \frac{(\gamma - k) B(\gamma - k - 1, k - 1)}{(k-1)B(\gamma - k - 1, k - 1)} \tilde{F}(x).$$

or, equivalently,

$$\tilde{F}(x) \sim \frac{k^{k-1}}{(\gamma - k) B(\gamma - k - 1, k - 1)} (1 - q).$$

By Lemma 3.3, it is easy to verify that $\tilde{F}(\cdot) \in \mathcal{R}_{\gamma}(+\infty)$ if and only if $F^{\gamma}(1 - \cdot) \in \mathcal{R}_{\gamma}(+\infty)$. Actually, with $U(\cdot) = 1/\tilde{F}(\cdot)$ we have

$$U(\cdot) \in \mathcal{R}_{\gamma}(+\infty) \iff U(\cdot) \in \mathcal{R}_{\gamma}(1/\gamma)$$

Hence, it follows from (4.3) that

$$x = F^{\gamma}(1 - (1 + o(1))k^{-1} B(\gamma - k, k) (1 - q)).$$

Now, substituting (4.2)-(4.4) into (2.1) yields that

$$H_q[X] = x + \left(\frac{E\left[X - x \right]^k}{\gamma - 1} \right)^{1/k} x^{1-k} F^{\gamma - k} (q).$$

This proves relation (4.1) for the case $k > 1$. □

Let us use F to numerically examine the accuracy of the asymptotic formula (4.1). We refer the reader to the monograph of Kaas et al. (2008) for applications of F to various problems in actuarial science. Assume that F is a Pareto distribution given by

$$F(x) = 1 - \left(\frac{\theta}{x + \theta} \right)^{\alpha}, \quad x, \alpha, \theta > 0.$$

Thus, $F \in \text{MDA}(\Phi_{\gamma})$ with $\gamma = \alpha$. We use uniroot to find the root x of (2.2) and then compute (2.1) to get the exact value of the Haezendonck–Goovaerts risk measure $H_q[X]$. Moreover, we compute the asymptotic formula given by (4.1).

In both figures below, we compare the asymptotic estimate to the exact value on the left and show their ratio on the right. For Fig. 4.1, we set $k = 1.1$ and 1.2, $\alpha = 1.6$, and $\theta = 1$. Apparently,
the ratio converges to 1 as $q \uparrow 1$. We also find that the accuracy improves as k decreases.

Similarly, for Fig. 4.2, we set $k = 1.1$, $\alpha = 1.5$ and 1.6, and $\theta = 1$. We find that the ratio converges to 1 as $q \uparrow 1$ and that the accuracy improves gradually as α decreases.

5. The Gumbel case with a power Young function

Now we consider the Gumbel case. Note that, for a random variable X distributed by $F \in \text{MDA}(\Lambda)$, the requirement $\mathbb{E}[X^k] < \infty$ for all $k \geq 1$ holds automatically since either $F \in \mathcal{R}_{-\infty}(+\infty)$ or $\hat{\lambda} < \infty$. As usual, denote by $\Gamma(\cdot)$ the gamma function, namely,

$$\Gamma(a) = \int_0^\infty x^{a-1}e^{-x}dx, \quad a > 0.$$

Theorem 5.1. Let $\varphi(t) = t^k$ for some $k \geq 1$ and let $F \in \text{MDA}(\Lambda)$ with an upper endpoint $0 < \hat{x} \leq \infty$. Then, as $q \uparrow 1$,

(i) when $\hat{x} = \infty$ we have

$$H_q[X] \sim F^{-} \left(1 - \frac{k^k}{\Gamma(k+1)}(1-q) \right);$$

(ii) when $\hat{x} < \infty$ we have

$$\hat{x} - H_q[X] \sim \hat{x} - F^{-} \left(1 - \frac{k^k}{\Gamma(k+1)}(1-q) \right).$$

To prove Theorem 5.1, we first prepare an elementary result.
Lemma 5.1. If \(F \in \text{MDA}(\Lambda) \) with an upper endpoint \(0 < \hat{x} \leq \infty \), then it holds for all \(k > 0 \) that
\[
\lim_{x \to \hat{x}} \frac{d^k(x)}{dF(x)} = \Gamma(k+1),
\]
where \(a(\cdot) \) is the auxiliary function appearing in the representation (3.4).

Proof. When \(\hat{x} = \infty \), we have
\[
E[(X - x)^k] = \int_0^\infty \tilde{F}(x+y)dy
= d^k(x)\tilde{F}(x) \int_0^\infty \frac{\tilde{F}(x + za(x))}{\tilde{F}(x)}dz
\sim d^k(x)\tilde{F}(x) \int_0^\infty e^{-z}dz^k.
\]
where in the second step we used the change of variables \(y = za(x) \) and in the last step we applied the dominated convergence theorem, which is justified by Lemma 3.4. Similarly, when \(\hat{x} < \infty \), recalling (3.3) we have
\[
E[(X - x)^k] = \int_0^{\hat{x}-x} \tilde{F}(x+y)dy
= d^k(x)\tilde{F}(x) \int_0^{(\hat{x}-x)/a(x)} \frac{\tilde{F}(x + za(x))}{\tilde{F}(x)}dz
\sim d^k(x)\tilde{F}(x) \int_0^{\hat{x}-x} e^{-z}dz^k.
\]
Thus, for both cases, relation (5.3) holds. □

Proof of Theorem 5.1. In the proof below, we shall tacitly alternate the two limits \(q \uparrow 1 \) and \(x \uparrow \hat{x} \), as justified by Lemma 2.2. The auxiliary function \(a(\cdot) \) appearing below corresponds to the one in the representation (3.4).

(i) We distinguish the cases \(k = 1 \) and \(k > 1 \). For the case \(k = 1 \), we start from relation (1.3). Then applying Lemmas 5.1 and 3.1(b) and relation (3.3), in turn, we have
\[
H_q[X] \sim F^{-\lambda}(q) + a(F^{-\lambda}(q))\frac{\tilde{F}(F^{-\lambda}(q))}{1-q} \sim F^{-\lambda}(q).
\]
This proves relation (5.1) for the case \(k = 1 \).

For the case \(k > 1 \), applying Lemma 5.1 to relation (2.2) leads to
\[
1 - q = \left(\frac{E[(X - x)^{k-1}]}{E[(X - x)^k]} \right) k \sim \frac{\Gamma(k+1)d^{k-1}(x)\tilde{F}(x)}{\Gamma(k)d^k(x)\tilde{F}(x)}
= \frac{\Gamma(k+1)}{k}d^k(x)\tilde{F}(x).
\]
Then, substituting (5.3) and (5.4) into (2.1) yields that
\[
H_q[X] - x = \left(\frac{E[(X - x)^k]}{1-q} \right)^{1/k} \sim ka(x),
\]
which, due to (3.3), implies that \(H_q[X] \sim x \). Similarly as in the proof of Theorem 4.1, by Lemma 3.3 with \(U(\cdot) = 1/\tilde{F}(\cdot) \), it is easy to verify that \(\tilde{F}(\cdot) \in \text{R}_{\infty}(\infty) \) if and only if \(F^{-\lambda}(1-\cdot) \in \text{R}_0(0) \). By this and (5.4) we have
\[
x = F^{-\lambda}\left(1 - (1 + a(1))\frac{k^k}{\Gamma(k+1)(1-q)}\right)
\sim F^{-\lambda}\left(1 - \frac{k^k}{\Gamma(k+1)(1-q)}\right).
\]
This leads to relation (5.1) for the case \(k > 1 \).

(ii) As before, we still distinguish the cases \(k = 1 \) and \(k > 1 \). For the case \(k = 1 \), we start from relation (1.3). Then applying Lemmas 5.1 and 3.1(b) and relation (3.3), in turn, we have
\[
\hat{x} - H_q[X] = \left(\hat{x} - F^{-\lambda}(q) \right) - \frac{E[(X - F^{-\lambda}(q))^k]}{1-q}
\sim \left(\hat{x} - F^{-\lambda}(q) \right) - a(F^{-\lambda}(q))\frac{\tilde{F}(F^{-\lambda}(q))}{1-q}
\sim \hat{x} - F^{-\lambda}(q).
\]
This proves relation (5.2) for the case \(k = 1 \).

Next consider \(k > 1 \). For this case the relations in (5.4) still hold. Then, substituting (5.3) and (5.4) into (2.1) yields that
\[
\hat{x} - H_q[X] - (\hat{x} - x) = \left(\frac{E[(X - x)^k]}{1-q} \right)^{1/k} \sim -ka(x),
\]
which, due to (3.3), implies that \(\hat{x} - H_q[X] \sim \hat{x} - x \). Similarly as before, by Lemma 3.3 with \(U(\cdot) = 1/\tilde{F}(\hat{x} - (-\cdot))^{-1} \), it is easy to verify that \(\tilde{F}(\hat{x} - \cdot) \in \text{R}_{\infty}(\infty) \) if and only if \(\hat{x} - F^{-\lambda}(1-\cdot) \in \text{R}_0(0) \). By this and (5.4) we have
\[
\hat{x} - x = \hat{x} - F^{-\lambda}\left(1 - (1 + a(1))\frac{k^k}{\Gamma(k+1)(1-q)}\right)
\sim \hat{x} - F^{-\lambda}\left(1 - \frac{k^k}{\Gamma(k+1)(1-q)}\right).
\]
This proves relation (5.2) for the case \(k > 1 \). □

In the proof above, the asymptotics for \(x \) given by relation (5.6) actually can be changed to \(F^{-\lambda}(1 - c(1-q)) \) for any \(c > 0 \) because \(F^{-\lambda}(1-\cdot) \in \text{R}_0(0) \). Similarly, the asymptotics for \(\hat{x} - x \) given by relation (5.8) can be changed to \(\hat{x} - F^{-\lambda}(1 - c(1-q)) \) for any \(c > 0 \). However, the most rational choice for \(c \) in both places should be \(c = k^k/\Gamma(k+1) \).

We would like to point out that relations (5.5) and (5.7) give second-order asymptotics for \(H_q[X] \). They become more powerful than (5.1) and (5.2) provided that the exact value of \(x \) solving (2.2) or a good approximation for \(x \) is available.

A distribution function \(F \) belongs to the class \(\mathcal{L}(\lambda) \) for some \(\lambda > 0 \) if \(\hat{x} = \infty \) and
\[
\lim_{x \to \infty} \frac{\tilde{F}(x+y)}{\tilde{F}(x)} = e^{-\lambda y}, \quad y \in \mathbb{R}.
\]
\[(5.9)\]
The class \(\mathcal{L}(\lambda) \) contains many well-known light-tailed distributions such as the exponential, gamma and inverse Gaussian distributions. Relation (5.9) directly shows that \(F \in \text{MDA}(\Lambda) \) with \(a(\cdot) \equiv 1/\lambda \). Thus, by (5.5) we arrive at the following.

Corollary 5.1. Let \(\varphi(t) = t^k \) for some \(k > 1 \) and let \(F \in \mathcal{L}(\lambda) \) for some \(\lambda > 0 \). Then
\[
\lim_{q \uparrow 1} (H_q[X] - x) = \frac{k}{\lambda},
\]
where \(x \) is determined by (2.2) and satisfies
\[
x \sim F^{-\lambda}\left(1 - (1 - q)\frac{k^k}{\Gamma(k+1)}\right).
\]
Finally, we use \(\mathbb{R} \) to numerically examine the accuracy of the asymptotics given by (5.6). Assume that \(F \) is a lognormal distribution given by
\[
F(x) = N\left(\ln x, \mu/\sigma\right), \quad x > 0, \quad -\infty < \mu < \infty, \quad \sigma > 0,
\]
Similarly as in the proof of Lemma 6.1 and Lemma 3.1(b), we have

\[\hat{x} - H_q[X] = (\hat{x} - F ←(q)) - \frac{E[(X - F ←(q)) +]}{1 - q} \]

where \(N(\cdot)\) denotes the standard normal distribution function. Note that

\[a(x) = \frac{N(\sigma^{-1}(\ln x - \mu)\sigma x)}{N'(\sigma^{-1}(\ln x - \mu))}, \]

where \(N'\) is the standard normal density function; see, e.g., page 150 of Embrechts et al. (1997).

For Fig. 5.1, we set \(k = 1.5\) and \(2, \mu = 2\), and \(\sigma = 0.5\). We compare the asymptotic estimate \(x + ka(x)\) given by (5.5) to the exact value of \(H_q[X]\) on the left and show their ratio on the right. Apparently, the ratio converges to 1 as \(q \uparrow 1\). However, our numerical experiments show that the accuracy becomes low for large \(\sigma\).

6. The Weibull case with a power Young function

In the last section of asymptotic analysis we consider the Weibull case. For this case the requirement \(E[X^k] < \infty\) for all \(k \geq 1\) holds automatically since \(\hat{x} < \infty\).

Theorem 6.1. Let \(\varphi(t) = t^k\) for some \(k \geq 1\) and let \(F \in \text{MDA}(\Psi_p)\) with \(\gamma > 0\) and \(0 < \hat{x} < \infty\). Then, as \(q \uparrow 1\),

\[\hat{x} - H_q[X] \sim \frac{\gamma}{\gamma + k} \left(\frac{k^{k-1} B(\gamma + 1, k) (\gamma + k)^{\gamma}}{\hat{x} - \hat{x}^{\gamma - 1}(q)} \right) . \]

We first prepare an elementary result.

Lemma 6.1. If \(F \in \text{MDA}(\Psi_p)\) with \(\gamma > 0\) and \(0 < \hat{x} < \infty\), then it holds for all \(k > 0\) that

\[\lim_{x \uparrow \hat{x}} \frac{E[(X - x)^k]}{(\hat{x} - x)^k F(x)} = kB(\gamma + 1, k) . \]

Proof. Similarly as in the proof of Lemma 4.1, for \(x < \hat{x}\),

\[E[(X - x)^k] = \int_0^{\hat{x} - x} F(x + y) dy^k \]

\[= F(x) \int_0^{\hat{x} - x} \frac{F(\hat{x} - (\hat{x} - x) - y)}{F(\hat{x} - x)} dy^k . \] (6.3)

Since \(F(\hat{x} - \cdot) \in R_\gamma(+0), by Lemma 3.2, for arbitrary \(0 < \varepsilon < 1\), there is some \(x_0 < \hat{x}\) such that, for all \(x_0 < x < \hat{x}\) and all \(0 < y < \hat{x} - x\),

\[(1 - \varepsilon) \left(\frac{\hat{x} - x - y}{\hat{x} - x} \right)^{\gamma+\varepsilon} \leq \frac{F(\hat{x} - (\hat{x} - x) - y)}{F(\hat{x} - x)} \]

\[\leq (1 + \varepsilon) \left(\frac{\hat{x} - x - y}{\hat{x} - x} \right)^{\gamma-\varepsilon} . \]

Applying the second inequality above to (6.3), it holds for all \(x_0 < x < \hat{x}\) that

\[E[(X - x)^k] \leq (1 + \varepsilon) F(x) \int_0^{\hat{x} - x} \left(\frac{\hat{x} - x - y}{\hat{x} - x} \right)^{\gamma-\varepsilon} dy^k \]

\[= (1 + \varepsilon) (\hat{x} - x)^{\gamma} F(x) \int_0^1 (1 - z)^{\gamma-\varepsilon} dz^k , \]

where we used the change of variables \(y = z(\hat{x} - x)\). By the arbitrariness of \(\varepsilon\), it follows that

\[\limsup_{x \uparrow \hat{x}} \frac{E[(X - x)^k]}{(\hat{x} - x)^k F(x)} \leq \int_0^1 (1 - z)^{\gamma} dz^k . \]

A corresponding lower bound can be obtained similarly. Thus, relation (6.2) holds. \(\square\)

Proof of Theorem 6.1. In the proof below, we shall tacitly alternate the two limits \(q \uparrow 1\) and \(x \uparrow \hat{x}\), as justified by Lemma 2.2.

We distinguish the cases \(k = 1\) and \(k > 1\). For the case \(k = 1\), starting from relation (1.3) and then applying Lemmas 6.1 and 3.1(b), we have

\[\hat{x} - H_q[X] = (\hat{x} - F ←(q)) - \frac{E[(X - F ←(q)) +]}{1 - q} . \] (6.2)
Fig. 6.1. Young function with $k = 3$ and 6, and beta distribution with $a = 2$ and $b = 6$.

Fig. 6.2. Young function with $k = 3$, and beta distribution with $a = 2$ and $b = 6$ and 10.

\[
\sim (\hat{x} - F^\rightarrow(q)) = \frac{1}{\gamma + 1} (\hat{x} - F^\rightarrow(q)) \frac{F(F^\rightarrow(q))}{1 - q} \\
\sim \frac{\gamma}{\gamma + 1} (\hat{x} - F^\rightarrow(q)).
\]

This proves relation (6.1) for the case $k = 1$.

Now consider $k > 1$. Applying Lemma 6.1 to relation (2.2), we have

\[
1 - q = \left(\frac{E[(X-x)^{k-1}]}{E[(X-x)^{k}]^{k-1}}\right)^k \\
\sim \left(\frac{(k-1)B(\gamma + 1, k-1)}{kB(\gamma + 1, k)} (\hat{x} - x)^{k-1} F(x)\right)^k \\
\sim \left(\frac{\gamma}{\gamma + 1} (\hat{x} - x)^{k-1} F(x)\right)^k \\
\sim B(\gamma + 1, k) \left(\frac{\gamma + k}{k \gamma + 1}\right) F(x). \quad (6.4)
\]

Substituting (6.2) and (6.4) into (2.1) yields that

\[
H_q[X] - x = \left(\frac{E[(X-x)^{k}]}{1 - q}\right)^{1/k} \sim \frac{k}{\gamma + k} (\hat{x} - x). \quad (6.5)
\]

Similarly as in the proof of Theorem 4.1, by Lemma 3.3 with $U(\cdot) = 1/F(\hat{x} - (\cdot)^{1/k})$, it is easy to verify that $F(\hat{x} - (\cdot)) \in R_{1/\gamma}(+0)$ if and only if $\hat{x} - F^{-}(1 - \cdot) \in R_{1/\gamma}(+0)$. Thus, after rewriting (6.4) as

\[
F(\hat{x} - (\hat{x} - x)) \sim \frac{(1 - q)^{k-1}}{B(\gamma + 1, k) (\gamma + k)^k}.
\]
we see that
\[\hat{x} - x = \hat{x} - F^{-}(1 - \frac{(1 + o(1)) k^{1-}}{B (y + 1, k) (y + k)^{y}} (1 - q)) \]
\[\sim \left(\frac{k^{1-}}{B (y + 1, k) (y + k)^{y}} \right)^{1/y} (\hat{x} - F^{-}(q)) \cdot \tag{6.6} \]
Finally, by (6.5) and (6.6),
\[\hat{x} - H_q[x] = (\hat{x} - x) - (H_q[x] - x) \]
\[\sim \frac{\gamma}{\gamma + k} (\hat{x} - x) \]
\[\sim \frac{\gamma}{\gamma + k} \left(\frac{k^{1-}}{B (y + 1, k) (y + k)^{y}} \right)^{1/y} (\hat{x} - F^{-}(q)) \cdot \]
This proves relation (6.1) for the case \(k > 1 \). □

Similarly as before, we use \(R \) to numerically examine the accuracy of relation (6.1). Assume that \(F \) is a beta distribution with probability density function given by
\[f(x) = \frac{x^a-1(1-x)^{b-1}}{B(a,b)}, \quad 0 < x < 1, \ a, b > 0. \]
Thus, \(F \in \text{MDA}_\Psi \) with \(\gamma = b \). We compare the asymptotic estimate for \(\hat{x} - H_q[x] \) given by relation (6.1) to its exact value on the left and show their ratio on the right.
For Fig. 6.1, we set \(k = 3 \) and \(6, a = 2, b = 6 \). Apparently, the ratio converges to 1 as \(q \uparrow 1 \). We also find that the varying value of \(k \) does not affect the convergence rate much.
For Fig. 6.2, we set \(k = 3, a = 2, b = 6 \) or 10. The same as before, the ratio converges to 1 as \(q \uparrow 1 \). We also find that the accuracy slightly improves as \(b \) increases.

7. The exponential case with a general Young function
In this section, we consider the case in which the risk variable \(X \) is exponentially distributed and the Young function is general. We seek an analytical expression for the Haezendonck–Goovaert risk measure.

Theorem 7.1. Let \(\psi(\cdot) \) be a general Young function such that \(\int_0^\infty e^{-st}d\psi(t) < \infty \) for all \(s > 0 \) and let \(X \) follow an exponential distribution function with rate \(\lambda > 0 \), namely, \(F(x) = e^{-\lambda x} \) for \(x \geq 0 \).
Then
\[H_q[X] = \frac{1}{\lambda} \ln \int_0^\infty e^{-\lambda x}d\psi(t) + h, \quad q \in (0, 1), \tag{7.1} \]
where \(h \in (0, \infty) \) is the unique solution to the equation
\[\int_0^\infty e^{-\lambda h}d\psi(t) = \int_0^\infty te^{-\lambda \hat{x}}d\psi(t). \tag{7.2} \]

The condition on the Young function \(\psi(\cdot) \) ensures that the exponential risk variable \(X \) belongs to the Orlicz heart of \(\psi(\cdot) \). It is noteworthy that the solution \(h \) to Eq. (7.2) is invariant with both \(q \) and \(x \).

In order to prove Theorem 7.1, we first prepare an elementary result below.

Lemma 7.1. Let \(\psi(\cdot) \) be a general Young function such that \(\int_0^{\infty} e^{-st}d\psi(t) < \infty \) for all \(s > 0 \). Then it holds that
\[\lim_{s \to \infty} \frac{\int_0^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} = \infty \tag{7.3} \]
and that
\[\lim_{s \to \infty} \frac{\int_0^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} = 0. \tag{7.4} \]

Proof. With arbitrary \(M > 0 \) we derive
\[\frac{\int_0^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} \geq \frac{\int_0^M te^{-st}d\psi(t) + \int_M^\infty \psi(t)}{\int_0^s e^{-st}d\psi(t)} \geq \frac{M \int_0^\infty \psi(t) + \int_M^\infty e^{-st}d\psi(t)}{\psi(M) + \int_M^\infty e^{-st}d\psi(t)} \]
\[= \frac{M}{\frac{\psi(M)}{\psi(M)} + 1} \to M, \quad \text{as } s \to \infty, \]
where the last step is due to the monotone convergence theorem and the fact that \(\psi(\infty) = \infty \). Hence, relation (7.3) holds by the arbitrariness of \(M \).

For arbitrary \(0 < \varepsilon < 1 \), make the rewriting
\[\frac{\int_0^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} = \frac{\int_0^\varepsilon te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} + \frac{\int_{\varepsilon}^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} \]

Notice that
\[\frac{\int_0^\varepsilon te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} \leq \frac{\int_0^\varepsilon te^{-st}d\psi(t)}{\int_{\varepsilon}^s e^{-st}d\psi(t)} \leq \frac{\int_0^\varepsilon te^{-st}d\psi(t)}{\frac{\varepsilon}{2} e^{-\varepsilon} (\psi(\varepsilon) - \psi(\frac{\varepsilon}{2}))} \to 0, \]

Similarly,
\[\lim_{s \to \infty} \frac{\int_{\varepsilon}^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} = 0. \]

It follows that
\[\lim_{s \to \infty} \frac{\int_0^s te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} = \lim_{s \to \infty} \frac{\int_0^\varepsilon te^{-st}d\psi(t)}{\int_0^s e^{-st}d\psi(t)} \leq \varepsilon. \]

Hence, relation (7.4) holds by the arbitrariness of \(\varepsilon \). □

Proof of Theorem 7.1. First of all, let us modify the definition of the Haezendonck–Goovaert risk measure in the following way. We think of \(x \) in (1.1) as \(x = x_q[x, h] \), a function of \(h \) and \(q \), and introduce \(g_q(h) = x + h \). Then we can rewrite (1.2) as
\[H_q[x] = \inf_{0 < h < \infty} g_q(h). \tag{7.5} \]

Our idea is to find the optimal value of \(h \) at which the infimum in (7.5) is attained. Relation (1.1) is rewritten as \(\int_0^\infty e^{-st}d\psi_t = (1 - q) e^{\lambda x} \), which implies that
\[x = \frac{1}{\lambda} \ln \frac{\int_0^\infty e^{-\lambda h}d\psi_t}{1 - q}. \tag{7.6} \]

Under the condition on \(\psi(\cdot) \), it is easy to see that \(\int_0^\infty e^{-\lambda h}d\psi_t \) is infinitely differentiable with respect to \(h \in (0, \infty) \). By (7.6),
\[\frac{dx}{dh} = \frac{\int_0^\infty e^{-\lambda h}d\psi_t}{\int_0^\infty e^{-\lambda h}d\psi_t} \]

Furthermore, by Hölder’s inequality,
\[d^2x = \frac{1}{\lambda} \left[\int_0^\infty e^{-\lambda h}d\psi_t \right] \int_0^\infty e^{-\lambda h}d\psi_t - \left(\int_0^\infty e^{-\lambda h}d\psi_t \right)^2 > 0, \]
where the strict inequality is due to the non-degeneracy of the Young function \(\psi(-) \). This means that the function \(x = x_\psi[X, h] \) and, hence, the function \(g_\psi(h) = x + h \) are strictly convex over \(h \in (0, \infty) \). Thus, the infimum in (7.5) is attained at \(h \) such that
\[
\frac{d}{dh} g_\psi(h) = \frac{\Gamma(k + 1)}{\lambda} \left(1 - q \right) r^k + \frac{k}{\lambda} = 1 - e^{-e^{-\lambda}} \quad (7.7)
\]
provided that this last equation admits a solution. Eqs. (7.7) and (7.2) are equivalent. The existence of a solution \(h \in (0, \infty) \) to Eq. (7.7) is justified by Lemma 7.1, while the uniqueness of the solution \(h \) to Eq. (7.7) results from the strict convexity of the function \(g_\psi(.) \) over \((0, \infty) \). Finally, substituting this optimal value \(h \) and the expression for \(x \) given by (7.6) into (7.5), we obtained the desired expression for \(H_q[X] \) as in (7.1).

By Theorem 7.1, the calculation of \(H_q[X] \) is reduced to solving Eq. (7.2). For a general Young function \(\psi(-) \), it is not possible to solve this equation analytically. We consider the following special cases.

(i) Let \(\psi(t) = t^k \) for some \(k \geq 1 \). Then Eq. (7.2) has a unique positive solution \(h = k/\lambda \). Thus,
\[
H_q[X] = \frac{1}{\lambda} \ln \frac{\Gamma(k + 1)}{(1 - q) r^k} + \frac{k}{\lambda},
\]
which is consistent with Corollary 5.1.

(ii) Let \(\psi(t) = \sum_{k=1}^{n} a_k t^k \) for some \(n \in \mathbb{N} \) and some real-valued coefficients \(a_1, \ldots, a_n \) fulfilling a certain condition such that \(\psi(-) \) is a normalized Young function. Then Eq. (7.2) becomes
\[
a_1 (\lambda h)^n + \sum_{k=1}^{n-1} (\Gamma(k + 1)(\lambda h)^n - k a_k \Gamma(k + 1)(\lambda h)^{n-k}) = 0.
\]
We can always numerically solve this polynomial equation (7.8) in \(R \). For example, let \(\psi(t) = (2t^3 + 3t^4 - 2t^3 + 3t^2 + t) / 7 \), \(q = 0.95 \) and \(\lambda = 1 \). Eq. (7.8) becomes
\[
h^5 + 5h^4 - 24h^3 + 108h^2 - 48h - 1200 = 0.
\]
We use polyroot to find its unique positive solution \(h = 3.349538 \). Plugging it in (7.1) gives \(H_q[X] = 4.4558760 \).

Acknowledgments

The authors would like to thank an anonymous referee for his/her useful comments on a previous version of this paper. The project was partially supported by the Centers of Actuarial Excellence (CAE) Research Grant (2011–2014) from the Society of Actuaries.

References

